首页> 外文OA文献 >Learning-based Compressive Subsampling
【2h】

Learning-based Compressive Subsampling

机译:基于学习的压缩子采样

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of recovering a structured signal $\mathbf{x} \in \mathbb{C}^p$from a set of dimensionality-reduced linear measurements $\mathbf{b} = \mathbf{A}\mathbf {x}$ arises in a variety of applications, such as medical imaging,spectroscopy, Fourier optics, and computerized tomography. Due to computationaland storage complexity or physical constraints imposed by the problem, themeasurement matrix $\mathbf{A} \in \mathbb{C}^{n \times p}$ is often of theform $\mathbf{A} = \mathbf{P}_{\Omega}\boldsymbol{\Psi}$ for some orthonormalbasis matrix $\boldsymbol{\Psi}\in \mathbb{C}^{p \times p}$ and subsamplingoperator $\mathbf{P}_{\Omega}: \mathbb{C}^{p} \rightarrow \mathbb{C}^{n}$ thatselects the rows indexed by $\Omega$. This raises the fundamental question ofhow best to choose the index set $\Omega$ in order to optimize the recoveryperformance. Previous approaches to addressing this question rely onnon-uniform \emph{random} subsampling using application-specific knowledge ofthe structure of $\mathbf{x}$. In this paper, we instead take a principledlearning-based approach in which a \emph{fixed} index set is chosen based on aset of training signals $\mathbf{x}_1,\dotsc,\mathbf{x}_m$. We formulatecombinatorial optimization problems seeking to maximize the energy captured inthese signals in an average-case or worst-case sense, and we show that thesecan be efficiently solved either exactly or approximately via theidentification of modularity and submodularity structures. We provide bothdeterministic and statistical theoretical guarantees showing how the resultingmeasurement matrices perform on signals differing from the training signals,and we provide numerical examples showing our approach to be effective on avariety of data sets.
机译:从一组降维线性测量$ \ mathbf {b} = \ mathbf {A} \ mathbf {x} $中恢复结构化信号$ \ mathbf {x} \ in \ mathbb {C} ^ p $的问题出现在多种应用中,例如医学成像,光谱学,傅立叶光学和计算机断层扫描。由于计算存储空间的复杂性或问题带来的物理限制,\ mathbb {C} ^ {n \ times p} $中的测量矩阵$ \ mathbf {A} \的形式通常为$ \ mathbf {A} = \ mathbf { P} _ {\\ Omega} \ boldsymbol {\ Psi} $用于某些正交基矩阵$ \ boldsymbol {\ Psi} \ in \ mathbb {C} ^ {p \ times p} $和子采样运算符$ \ mathbf {P} _ { \ Omega}:\ mathbb {C} ^ {p} \ rightarrow \ mathbb {C} ^ {n} $,选择由$ \ Omega $索引的行。这就提出了一个基本问题,即如何最佳选择索引集$ \ Omega $以优化恢复性能。解决此问题的先前方法依赖于使用$ \ mathbf {x} $结构的特定于应用程序的知识对非均匀\ emph {random}进行二次采样。在本文中,我们改为采用基于原理学习的方法,其中根据一组训练信号$ \ mathbf {x} _1,\ dotsc,\ mathbf {x} _m $选择一个\ emph {fixed}索引集。我们公式化了优化算法的问题,力图在平均情况或最坏情况下最大化这些信号中捕获的能量,并表明可以通过模块化和亚模块化结构的识别来有效地解决这些问题。我们提供确定性和统计性理论保证,以显示所得测量矩阵如何对不同于训练信号的信号执行操作,并提供数值示例,表明我们的方法对于各种数据集均有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号